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Abstract: A novel resin-based bulk-fill restorative material (ST; Stela SDI, Bayswater, Vic-
toria, Australia) has been recently introduced as a self-curing alternative to traditional
light-cured composites. Promoted for its unlimited depth of cure, enhanced aesthetics,
and unique primer composition, it aims to address challenges associated with amalgam
and light-curing composites. Thus, the aim of this in vitro study was to investigate the
performance of the new self-curing polymer-based restorative material, ST, compared
to two conventional light-cured composites for direct restoration. The study evaluated
compressive strength with and without aging, antibacterial activity, mineral deposition in
contact with Phosphate-Buffered Saline (PBS) and artificial saliva, porosity, and wettability
of ST (Tetric EvoCeram (TE; Ivoclar Vivadent, Schaan, Liechtenstein) and Clearfil Majesty
ES-2 (CM; Kuraray Noritake Dental, Tokyo, Japan)). The data was statistically analyzed (α
= 0.05) through one-way and two-way analysis of variance (ANOVA). ST demonstrated
significantly higher compressive strength than TE and CM at baseline and after aging
(p < 0.001), while aging significantly reduced compressive strength across all materials
(p < 0.001). Fracture mode analysis revealed brittle fractures for TE and CM, whereas
ST fractured in multiple smaller fragments. CM showed the highest void volume and
diameter, significantly differing from ST and TE (p < 0.001). Scanning electron microscopy
(SEM) analysis revealed cubical-like crystalline formations on ST’s surface after 28 days
of immersion in PBS and saliva, indicating some level of bioactivity, whereas no changes
were observed for TE and CM. Wettability testing showed ST had the lowest contact an-
gle (12.24◦ ± 2.1◦) compared to TE (62.78◦ ± 4.68◦) and CM (64.64◦ ± 3.72◦) (p < 0.001).
Antibacterial activity testing displayed a significant decrease in bacterial growth for CM
compared to ST (p = 0.001) and TE (p = 0.002); however, ST and TE showed no significant
differences (p = 0.950). To conclude, ST Automix demonstrated promising results across
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several key parameters, making it a potential candidate for long-lasting restorative appli-
cations. Future studies should explore its long-term clinical performance and investigate
formulations that enhance its antibacterial properties. Moreover, the bond strength of these
materials to dentin and the cytotoxicity should be evaluated.

Keywords: antibacterial activity; compression strength; direct restorative materials;
polymer-based; porosity; wettability

1. Introduction
Dental caries is an infectious disease caused by commensal bacteria such as Strepto-

coccus mutans, which ferment dietary carbohydrates to produce acids that demineralize
the hard dental tissues (enamel and dentin), leading to cavity formation [1]. Despite a
slight decline in prevalence since the 1990s [2], untreated dental caries affected 29% of
permanent teeth and 7.8% of primary teeth globally in 2017 [3]. Indeed, dental caries
ranked as the most prevalent health condition in the Global Burden of Disease Study
published by The Lancet in 2019 [4]. Therefore, prevention and treatment of dental caries
remain critical public health priorities, as they contribute to significant health disparities
worldwide [3]. Conventional treatments of dental caries rely on the removal of affected
tissues by employing rotary instruments, followed by reconstruction of the lost dental
substances. Until recent years, this restorative phase has been predominantly carried out
using dental amalgam in Europe due to its durability and mechanical strength [5]. Nev-
ertheless, advances in adhesive dentistry have led to the widespread use of resin-based
composite [6], particularly in developed countries, in which their success was related to
their excellent optical and mechanical properties and the lack of requirement for under-
cut preparation [7]. They were also used in response to the Minamata Convention on the
use of mercury [8]. These materials have shown good long-term performance in restoring
anterior and posterior cavities and relatively low failure rates after 10–20 years [6,9,10]
despite being slightly higher than those of amalgam [5,7].

Composite resins are three-dimensional materials that combine an organic resin matrix
with inorganic mineral particles linked by a silane coupling agent. Additionally, composite
resins contain polymerization initiators and other agents. However, they do not adhere directly
to dental tissues and require an adhesive layer for effective bonding [11]. The use of resin
composites is associated with two main shortcomings: polymerization shrinkage and longevity
due to hydrolysis of the bonding interface with dental substrates, particularly dentine.

Polymerization shrinkage is an intrinsic property of resinous materials, resulting from
the reduction of the volumetric monomer distance during the polymerization reaction, as
weak van der Waals forces are converted into covalent bonds [12]. The issue is not the
shrinkage itself but the stress generated at the tooth-material interface in a constricted and
well-defined space, which can cause enamel cracks, cuspal deflection, microleakage, and
postoperative sensitivity. These flaws can lead to restoration debonding and/or secondary
caries, making polymerization shrinkage a major cause of resin-based restoration fail-
ure [12,13]. Since polymerization shrinkage increases with the volume of the polymerized
material, the most effective solution for clinicians to face such a situation is the incremen-
tal or layering composite technique. It involves restoring the lost dental substances by
applying small increments (1–2 mm) of material, polymerized one after another. Addi-
tionally, this technique enhances the degree of conversion of the material, as light scatters
more effectively in thinner layers [6,14]. Unfortunately, this technique also has inherent
drawbacks, including the fact that it is time-consuming and can potentially lead to bulk
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defects, such as air bubbles and micro-voids [12]. To address polymerization shrinkage,
bulk-fill composites have been developed, allowing for 4–5 mm incremental layers without
compromising polymerization performance. This is achieved through the incorporation
of additional photoinitiators and enhanced translucency for better light transmission [14].
Although it was demonstrated that this modification reduces polymerization shrinkage,
further research is needed to explore this in more depth [12]. Furthermore, it was estab-
lished that self-curing restorative materials generate less polymerization shrinkage than
light-curing materials due to their slower polymerization speed [14]. Specifically, self-cured
resin-based composites (RBCs) do not require light exposure as they lack photoinitiators,
making them a suitable substitute in case a curing light is unavailable [15–19]. They also
have a slower polymerization rate [15] and can achieve a higher degree of conversion
when combined with newer monomers and primers [15,16], potentially improving the
final restoration quality [17]. A new self-cured bulk-fill resin-based composite (RBC), Stela
(ST; SDI, Bayswater, VIC, Australia), has been recently introduced. Available in Automix
syringes or capsules, it is marketed as an “amalgam alternative” because it does not re-
quire a light-curing unit (LCU), offers unlimited depth of cure, and has superior aesthetics
compared to amalgam [20]. The polymerization of ST RBC is initiated when it contacts the
ST primer, accelerating the reaction at the tooth/primer-RBC interface. This system uses
a novel primer, free from tertiary amines, and includes glycerol-dimethacrylate (GDMA),
which may enhance polymerization, mechanical properties, adhesion to dentin, and reduce
water uptake and solubility [20]. ST Automix is formulated with various fillers, includ-
ing strontium fluoroaluminosilicate, ytterbium trifluoride, and calcium aluminate [14].
However, this novel auto-mixed composite material (ST) was rarely studied.

Therefore, the aim of this in vitro study was to evaluate the efficacy of a novel self-
curing restoration material, ST Automix, in terms of compressive strength with and without
aging, antibacterial activity, mineral deposition in contact with Phosphate-Buffered Saline
(PBS), and artificial saliva (AS). The porosity and wettability were also analyzed and com-
pared to two conventional light-curing resin composites. The first null-tested hypothesis
was that there would be no difference between ST and the two conventional tested com-
posites in terms of compressive strength and physicochemical properties. The second null
hypothesis was that there would be no difference between the tested materials in terms of
antibacterial activity.

2. Materials and Methods
2.1. Materials and Sample Preparations

Three different polymer-based restorative materials: Tetric EvoCeram A3 (TE; Ivoclar
Vivadent, Schaan, Liechtenstein), Stela Automix (ST; SDI Ltd., Bayswater, VIC, Australia),
and Clearfil Majesty ES-2 A3 (CM; Kuraray Noritake Dental; Tokyo, Japan) were evaluated
in this in vitro study (Table 1). In this study, the two conventional light-cured composite
materials were used as control groups. These materials were selected based on their es-
tablished clinical performance, allowing for a comparative assessment against the newly
introduced self-curing bulk-fill resin composite, ST. This design facilitated the evaluation
of ST’s mechanical, biological, and surface characteristics relative to commonly used bench-
mark materials. All materials were handled according to the manufacturers’ instructions
(Table 1). Standardized cylindrical specimens (3.8 mm in height and 3 mm in diameter)
were prepared using custom-made Teflon molds. The molds were placed on a glass plate
and filled with each material. For ST, the mold surfaces were pre-coated with Stela Primer
(SDI Ltd., Bayswater, VIC, Australia) prior to filling. CM and TE were light-cured for 20 s
using an LED curing system (Luxite Lampe LED, ITENA Clinical, Paris, France). ST was
left to set chemically for 4 min to ensure complete polymerization.
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Table 1. Chemical composition, manufacturers’ instructions, and lot number of the materials used.

Material Chemical Composition Manufacturer’
Instructions Lot

Adhese Universal (Ivoclar
Vivadent; Schaan,
Lichtenstein)

MDP, bis-GMA, HEMA, MCAP, D3MA,
ethanol, water, initiator,
stabilizers, silicon dioxide

1. Just for etch-and-rinse procedure: Apply phosphoric acid gel onto the
prepared enamel first, and then on to the dentin. The etchant should be
left to react on the enamel for 15–30 s and dentin for 10–15 s. Then, rinse
thoroughly with a vigorous stream of water for at least 5 s and dry with
oil—and water -free compressed air until the etched enamel surfaces
appear chalky white.

2. Application of the adhesive.
3. Starting with the enamel, completely coat the tooth surfaces to be

treated with Adhese Universal.
4. The adhesive must be scrubbed into the tooth surface for at least 20 s.

This time must not be shortened. Applying the adhesive on the tooth
surface without scrubbing is inadequate.

5. Disperse Adhese Universal with oil—and moisture-free compressed air
until a glossy, immobile film layer result. Important: Avoid pooling,
since this can compromise the fitting accuracy of the
permanent restoration.

6. Light cure the adhesive for 10 s.

Z06NMY

Clearfil Universal Bond
Quick (Kuraray Noritake,
Tokyo, Japan)

Bis-GMA (10–25%), ethanol (10–25%),
HEMA (2.5–10%), 10-MDP, hydrophilic
amide monomer, colloidal silica, silane
coupling agent, sodium fluoride,
camphorquinone, water

1. Apply BOND with a rubbing motion to the entire cavity wall with the
applicator brush. No waiting time is required.

2. Dry the entire cavity wall sufficiently by blowing mild air for more than
5 s until BOND does not move. Use a vacuum aspirator to prevent
BOND from scattering.

3. Light-cure BOND with a dental curing unit (10 s or 5 s depending on
the light type.

CK0443

Stela Primer (SDI Ltd.,
Bayswater,
Victoria,
Australia)

10-MDP, dimethacrylates,
methyl ethyl ketone (MEK),
water, initiators, stabilizers

1. Prime cavity and margins.
2. Wait 5 s.
3. Dry for 2–3 s.

1220447

Tetric EvoCeram A3
(Ivoclar Vivadent,
Schaan, Liechtenstein) (TE)

Filler: 75–76 wt.% (53–55 vol.%) inorganic
fillers; barium glass, ytterbium trifluoride,
mixed oxide (particle size of the inorganic
fillers 40 nm–3000 nm, mean size 550 nm)
and prepolymer (34 wt.%)
Matrix: Bis-GMA, UDMA, ethoxylated
Bis-EMA

1. For optimum results, apply Tetric EvoCeram in layers of max 2 mm
thickness or 1.5 mm thickness using Cavifil injector or a comparable
applicator and adapt it with a suitable instrument.

2. Adapt the material correctly to ensure intimate contact of the composite
resin with the cavity walls.

3. Prevent incomplete polymerization of the restoration by ensuring
sufficient exposure to the curing light.

4. For the recommendations regarding exposure time per increment and
light intensity (20 s, 10 s, or 5 s depending on the light intensity).

Z071CG

Clearfil Majesty ES-2 A3
(Kuraray Noritake Dental;
Tokyo,
Japan) (CM)

Bis-GMA, Other methacrylic monomers,
Surface treatment
glass powder, Surface treatment organic
composite filler,
Photopolymerization catalyst, Pigments, etc.

1. Insert a pre-loaded tip into the dispenser barrel and extrude the paste
into the dispenser barrel and extrude the paste into the cavity according
to the instructions for use of the dispenser.

2. Use the dispenser with a slow and steady pressure. Excessive force is
not necessary.

3. Discard the tip after use.

410173

Stela Automix (SDI Ltd.,
Bayswater,
Victoria,
Australia) (ST)

UDMA, GDMA, fumed silica,
barium aluminoborosilicate
glass, fluoro aminosilicate
glass, ytterbium trifluoride
(YbF3), calcium aluminate,
hydroperoxide-based
initiators, stabilizers,
pigments

1. Stela: straight to placement in 15 s.
2. Place Stela in a single increment, covering margins. 1226631

10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP), Bisphenol A glycidyl methacrylate (Bis-GMA), Hy-
droxyethyl methacrylate (HEMA), Methacrylate copolymer (MCAP), Decanediol dimethacrylate (D3MA), Ure-
thane dimethacrylate (UDMA), Ethoxylated bisphenol A dimethacrylate (Bis-EMA), Methyl ethyl ketone (MEK),
Glycerol dimethacrylate (GDMA), Ytterbium trifluoride (YbF3), fumed silica (Amorphous silica nanoparticles),
silane coupling agent (Silane-based adhesion promoter), and photopolymerization catalyst (Light-sensitive
compound to initiate polymerization).

2.2. Compression Strength & Fracture Mode

Forty-five specimens (n = 15 per group of polymer-based materials) were stored in
distilled water at 37 ◦C for 24 h and 28 days. Following the immersion periods, a uniaxial
compression test was conducted to determine the maximum load without failure of each
specimen. A compression test was performed using a universal electromechanical testing
device (Instron 3345, Norwood, MA, USA) equipped with a 1 kN load cell (Instron 2519-1 kN)
and a displacement sensor. Measurements were carried out at a constant crosshead speed of
0.5 mm/min. The specimens were placed between two lubricated steel plates, with the upper
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plate positioned as close to the specimen as possible without making contact. A compressive
force was then applied until rupture occurred. Force values were recorded using the Bluehill®

Universal software, Version 4.03 (Instron, Norwood, MA, USA).
The compressive strength was calculated in megapascals (MPa) according to the

following formula:
σc = 4P/πD2

where P is the maximum recorded force during testing, and D is the initial sample diameter.
All specimens were then observed under a digital microscope (VHX-5000, Keyence,

Osaka, Japan) at 50× magnification to analyze the fracture mode, which was then classified
as either brittle or ductile [21]. The mechanical behavior of each material given by the
stress-strain curve was also analyzed and compared to the fracture mode.

2.3. Porosity

The internal structure of the tested materials was investigated in three-dimensions (3D)
through micro-computed X-ray tomography (µCT) (EasyTom 160 from RX Solutions, Chavanod,
France). The imaging process was carried out at a voltage of 60 kV and a current of 70 µA, using
a micro-focused tube equipped with a tungsten filament. The source-to-detector distance (SDD,
435.5 mm) and the source-to-object distance (SOD, 9.34 mm) were adjusted to achieve a voxel size
of approximately 2.72 µm. Volume reconstruction was performed using the software Xact64 (RX
Solutions) after adopting geometrical corrections and ring artifact attenuation. 3D image analysis
was conducted using the Avizo software 2022-2 (ThermoFisher, Waltham, MA, USA).

2.4. Morphological Changes After PBS/Saliva Immersion

Twelve specimens of each material were prepared using the same Teflon molds (3.8 mm
in height and 3 mm in diameter) and protocol as before. These specimens were immersed
in 10 mL of phosphate-buffered saline (PBS10x, Dominique Dutscher, Bernolsheim, France)
or 10 mL of artificial saliva (Pickering Laboratories, Mountain View, CA 94043, USA) at
37 ◦C. At specified time points—24 h, 7, 14, and 28 days—the specimens were gently
washed three times for 5 min in distilled water. All specimens were then sputter-coated
with gold-palladium using a Hummer JR sputtering device (Technics, San Jose, CA, USA).

The specimens were then examined using a scanning electron microscope (SEM; Quanta
250 FEG, FEI Company, Eindhoven, The Netherlands) at a magnification of ×2000 to assess
morphological changes. The SEM operated with an electron acceleration voltage of 7.5 kV. Ad-
ditionally, surface chemical analysis was conducted using energy-dispersive X-ray spectroscopy
(EDX; Edax AMETEK, San Luis Obispo, CA, USA) at a magnification of ×5000.

2.5. Wettability

Three specimens from each material were prepared in Teflon molds (20 mm in diameter
and 2 mm in thickness) and used to investigate the sorption time by placing a 4 µL drop
of distilled water on the material surface. All the tests were performed at 23◦. A contact
angle device (Attension Theta, Biolin Scientific, Götenborg, Sweden) was used to measure
the interaction. The water droplet’s profile was recorded using a horizontal camera for
analysis, and the contact angle was reported after 10 s of depositions.

2.6. Antibacterial Activity

Staphylococcus aureus (S. aureus, ATCC 25923) was chosen for this study due to its clinical
relevance as a major pathogenic microorganism in dental infections [1]. The bacteria were
cultured according to the manufacturer’s instructions using Muller–Hinton broth “MHB” (Le
Pont de Claix, France). In all the following tests, the turbidity of MHB containing S. aureus
(bacterial medium) was adjusted to OD600 (nm) = 0.3. Three specimens (3.8 mm in height and
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3 mm in diameter) from each material were used. Each specimen was placed in contact with 1
mL of the bacterial medium using a 24-well culture plate. In the positive control, the bacterial
medium was placed into the well without any material. In the negative control, the well was
filled with 21 µL of 20% Chlorohexidine. The plates were then incubated for 24 h at 37 ◦C
under constant stirring (450 rpm). The experiment was performed in triplicates. After each
experiment, 50 µL from each well tube was diluted with 50 µL of MHB. The solution was mixed
using a vibrator for 10 s, and a microplate absorbance spectrophotometer (xMarkTM Biorad,
Schiltigheim, France) was used to evaluate the CFU/mL (colony forming units/mL) count.

2.7. Statistical Analysis

Statistical analysis was accomplished using SigmaPlot (version 11.2, Systat Software,
Inc., San Jose, CA, USA). The means and standard deviations were calculated. Shapiro–
Wilk testing was performed to check the normality. One-way analysis of variance on
ranks (ANOVA), including a multiple comparison procedure (Tukey testing), was used to
determine whether significant differences existed in the antibacterial activity and wettability.
A two-way ANOVA was also used to determine whether significant differences existed in
terms of compressive strength. Chi-square was used to evaluate the fracture mode. In all
the measurements, a statistical significance level α of 0.05 was adopted.

3. Results
3.1. Compressive Strength and Fracture Mode

Two-way ANOVA revealed a statistically significant effect for both material type
and aging time (p < 0.001). At both aging time points, ST exhibited a significantly higher
compressive strength compared to TE and CM (p < 0.001). In contrast, no significant
difference was observed between TE and CM (p = 0.237) (Figure 1).
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Figure 1. Means and standard deviation values of compressive strength for the three tested materials:
ST (Stela Automix), CM (Clearfil Majesty ES-2), and TE (Tetric EvoCeram). Statistical analyses were
mentioned by arrows.

Concerning the aging factor, all values obtained with the tested materials demonstrated
a significant decrease after 28 days of aging (p < 0.001).

After the compression test, all the specimens were observed under a digital microscope to
investigate the fracture mode. Bleached and striated zones correspond to areas that underwent
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plastic deformation and thus, ductile fracture. In contrast, areas that are still transparent without
striations showed a rapid, brittle fracture. According to this analysis, CM and TE demonstrated
more brittle fracture zones compared to ST, as shown in Figure 2. In addition, it was observed
that CM and TE typically fractured into only two or three pieces, whereas ST tended to break
into multiple smaller fragments. This illustrates that damage in CM and TE materials is
unidirectional and fast, confirming the brittle fracture hypothesis. As for ST, the damage is
multidirectional and progressive, resulting in a globally ductile fracture.
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3.2. Porosity

A higher void volume fraction and larger void diameter were observed for CM (16.8± 2.46µm)
compared to ST and TE (Figure 3) (p < 0.001). However, no significant difference was found
between TE (0.047 ± 0.05 µm) and ST (0.47 ± 0.11 µm) (p = 0.864). Accordingly, ST and
TE exhibited similar average porosity diameters (18.44 ± 1.2 µm and 15.4 ± 3.55 µm,
respectively), which were significantly lower than that of CM (22.81 ± 0.46 µm) (p = 0.001).
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3.3. SEM & EDX Analysis

Scanning electron microscopy (SEM) analysis was performed for the three materials
after immersion in AS or PBS at different time points. After 28 days of immersion, only ST
demonstrated cubical-like crystalline deposition at the surface for both immersion solutions
(Figure 4). In contrast, no changes were observed for CM and TE (Figures 5 and 6).
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Figure 6. Scanning electron microscope images (2000× magnification) demonstrating the mineral
depositions on TE (Tetric EvoCeram) after 24 h, 7, 14, and 28 days of immersion in PBS or artificial
saliva. EDX analysis demonstrates the chemical compositions of the different surfaces.

The ability of restorative dental materials to promote mineral deposition and reminer-
alization at the interface between restorations and dental tissue represents an additional
characteristic of biomaterials. This property was assessed through energy-dispersive X-ray
(EDX) surface analysis, which revealed that while CM and TE specimens exhibited no
significant alterations in their surface composition after immersion in PBS or artificial
saliva, ST specimens demonstrated evidence of mineral precipitation. These findings were
further corroborated by scanning electron microscopy (SEM) analyses, which confirmed
the presence of mineral deposits solely on the surface of the ST specimens.

3.4. Wettability

Our results show that 10s after the water droplet deposition, ST demonstrated a significantly
lower contact angle (12.24 ± 2.1◦) compared to CM (64.64 ± 3.72◦) and TE (62.78 ± 4.68◦)
(p < 0.001) while no significant difference was found between CM and TE (p = 0.759) (Figure 7).
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3.5. Antibacterial Activity

The antibacterial assessment revealed a statistically significant reduction in bacterial
growth in the medium exposed to CM compared to ST (p = 0.001), TE (p = 0.002), and the
control group (p = 0.006), suggesting superior antimicrobial properties of CM. However,
the antibacterial efficacy showed no statistically significant differences between TE and the
control group (p = 0.987), ST and TE (p = 0.950), or ST and the control group (p = 0.819),
indicating comparable bacterial growth inhibition patterns among these groups (Figure 8).
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4. Discussion
The first null hypothesis, which stated that there is no difference between the tested

materials in terms of compressive strength and physicochemical properties, and the second
null hypothesis concerning the antibacterial activity were rejected. However, for antibac-
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terial activity, only CM demonstrated a significant effect, while no substantial differences
were observed between ST and TE.

ST demonstrated a significantly higher compressive strength compared to TE and CM,
both before and after aging. In contrast, TE and CM exhibited comparable compressive
strength values but were less resistant to aging-induced degradation.

The enhanced mechanical performance of ST can be attributed to several factors, the
first being its distinctive formulation, particularly the inclusion of UDMA, GDMA, and
ytterbium trifluoride. Studies have reported that UDMA-based systems generally achieve
greater cross-linking density and improved mechanical stability [21,22].

Another key factor contributing to the superior polymerization kinetics of ST is its
optimized initiator and co-initiator configuration [20], which promotes more efficient
polymer network formation. Although conventional light-cured resins have inherent
limitations in polymerization uniformity due to constraints in light penetration, ST’s self-
curing mechanism effectively overcomes these challenges. This self-curing capability
ensures uniform polymerization throughout the entire matrix material, regardless of light
availability, resulting in stronger mechanical properties [23].

The significant reduction in compressive strength observed after aging in all tested
materials could be attributed to the expansion of porosities due to storage in an aqueous
medium, which increases their volume fraction compared to the initial state, ultimately
leading to a decrease in mechanical resistance [24].

The presence of ytterbium trifluoride, along with other components, may have con-
tributed to a greater cross-linking density and improved mechanical stability. In contrast,
TE and CM, which rely on Bisphenol A glycidyl methacrylate (Bis-GMA)-based matrices,
exhibited comparable compressive strength values but were less resistant to aging-induced
degradation [20,23]. This reduced resistance may also be related to the degree of polymeriza-
tion achieved through the unique composition of the initiator and co-initiator systems [20].

Fracture mode analysis revealed that CM and TE exhibited prevalently brittle fractures
with fewer fragments, while ST was characterized by multiple smaller fragments. The
ability of a material to resist fracture is closely linked to its internal structure, including
the distribution of voids and the strength of the filler-matrix interface. Voids in restora-
tive dental materials can form during the manufacturing process or because of improper
handling by clinicians, leading to regions of weakness in the restorations. Brittle fracture
patterns, such as those seen in CM and TE, may be linked to the high void fractions and
poor filler-matrix adhesion, which allow localized stress concentrations to form under load.
These stress concentrations cause rapid crack propagation, leading to fewer and larger
fracture fragments. Indeed, this phenomenon was demonstrated in previous studies, where
higher void content and larger void diameter were found to significantly contribute to the
mechanical failure of resin composites [25]. In contrast, materials like ST, which have a
lower void fraction and an improved filler-matrix bonding, demonstrate enhanced fracture
toughness. It is possible that the unique integration of the filler-matrix in ST contributed
to the distribution of the stress more evenly throughout the material, thus enhancing its
fracture resistance. These findings seem to be in accordance with previous reports showing
that improved filler-matrix adhesion allows for a better load transfer between the resin
matrix and the filler particles, which reduces the chances of crack initiation and propa-
gation [26]. This characteristic contributes to the material’s ability to produce numerous
smaller fragments upon fracture as stress is distributed more evenly, subsequently prevent-
ing the formation of large cracks. These results support those observed in earlier reports,
which suggest that the fracture resistance of composites is closely associated with the void
fraction and the filler content [27].
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CM exhibited the highest amount of porosity compared to ST and TE. Porosity is a crit-
ical factor affecting mechanical properties, as increased void content weakens the structure
and increases the risk of cracks [28]. ST seems to have an optimized filler distribution and
advanced polymerization kinetics, which likely reduced porosity while contributing to its
enhanced mechanical performance [29]. Furthermore, it was indicated that the higher the
polymerization shrinkage strain, the lower the amount of porosity [30]. This could explain
the fact that the reduced void content in ST was due to more efficient polymerization,
which minimized the formation of gaps between the filler particles and the matrix [31].
As the polymerization process progresses, the shrinkage strain can aid in compressing
the filler-matrix interface, reducing the occurrence of voids and ensuring a more compact
structure. In contrast, materials with a lower polymerization shrinkage, like CM, may have
retained more voids, leading to reduced mechanical strength and a higher porosity level.

Surface analysis using SEM revealed that only ST demonstrated mineral deposition
after immersion in PBS and artificial saliva for 28 days. The cubical-like crystalline struc-
tures on ST’s surface suggest that it has some level of bioactivity, likely resulting from the
ion-releasing capabilities of its unique fillers, such as calcium aluminate and ytterbium
trifluoride. GICs and calcium aluminate fillers are known for their ability to release ions,
which promote remineralization and form apatite-like deposition [31]. In particular, cal-
cium aluminate has been shown to release calcium ions, which can promote the deposition
of mineral phases resembling natural tooth enamel, thereby providing an additional layer
of protection to the restoration [32]. Moreover, ytterbium trifluoride has been linked to
enhanced bioactivity due to the release of fluoride, which plays a crucial role in enamel rem-
ineralization [33]. In contrast, CM and TE, which lack bioactive components, did not exhibit
any surface changes after immersion in PBS and artificial saliva. This observation aligns
with the findings of previous studies that emphasize the importance of bioactive fillers
in facilitating ion release and subsequent mineral deposition on the surface of restorative
materials. CM and TE are composed primarily of conventional inert glass/ceramic fillers
with no specific bioactivity, which clarifies their inability to undergo surface changes during
the immersion period. Without ion exchange or the release of specific ions such as calcium,
phosphate, and/or fluoride, these materials cannot trigger remineralization processes,
which is a key feature of bioactive materials in dental applications [34,35]. The observed
mineral-like deposits on the surface of ST after immersion in phosphate-buffered saline
and artificial saliva could be attributed to the unique chemical composition of the material,
which may include functional monomers or reactive filler components capable of attracting
calcium and phosphate ions. These ions can nucleate and grow into crystalline structures,
suggesting potential bioactivity and the ability to support mineral deposition [35].

The composition of composite resins is complex. In this study, general information on
the elemental structure of the evaluated composite resins was obtained using EDX [36–38].
EDX analysis further supported the SEM findings, as no significant compositional changes
were detected in CM and TE over the 28-day period, indicating that these materials do not
engage in ion exchange or mineral deposition.

In contrast, ST exhibited minimal yet noticeable compositional shifts that correlated
with the mineral deposition observed through SEM, highlighting its potential bioactive
nature. The interaction between ST and the surrounding environment appears to promote
remineralization, which could have important clinical implications, such as enhancing the
longevity and stability of dental restorations [19,20,39].

Wettability testing revealed that ST exhibited a significantly lower contact angle
compared to CM and TE, indicating superior hydrophilicity. Hydrophilicity refers to the
ability of a material to interact with water, which plays a critical role in determining how
effectively a material can bond with the surrounding tissues and fluids. A lower contact
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angle means that the material has a stronger affinity for water, which can improve its ability
to interact with substrates such as the dental tissues, thereby enhancing the adhesion and
potentially increasing the clinical performance of the restoration over time [40]. Materials
with lower contact angles tend to exhibit stronger surface interactions with water-based
fluids, which can reduce the risk of debonding [41]. In the case of ST, it exhibits greater
wettability compared to the conventionally tested composites. One possible explanation
lies in the presence of GIC and Ca-aluminate fillers, which possess an affinity for water,
making the material more hydrophilic [31,35].

Enhanced wettability is particularly important for materials with bioactive potential. When
a material has excellent wettability, it is better equipped to facilitate mineral ion exchange with
the surrounding environment, such as the release and uptake of calcium and phosphate ions.
This ion exchange can contribute to the remineralization of the tooth structure and can aid in the
formation of a protective layer on the surface of the material. Hydrophilic materials can enhance
the process of remineralization by facilitating ionic interactions with the biological environment,
making them ideal candidates for restorative materials in dental applications [42–44]. Bioactive
materials that exhibit superior wettability, like ST, can release calcium ions and phosphate ions
more efficiently, promoting the growth of hydroxyapatite on the surface of the material, which
mimics a natural tooth enamel [20,34,35].

ST demonstrated comparable antibacterial performance to TE and the control group,
while CM showed a significant reduction in bacterial growth. This observation suggests
that CM may possess intrinsic antibacterial properties, potentially linked to additives in its
formulation. Based on this, the present results seem in accordance with Ikeda et al., who
observed resin composites with a higher filler content, which displayed a reduced biofilm
retention [45–47]. In addition, this observation could also be related to the higher toxicity
of the non-polymerized monomer of CM compared to other materials [48]. However, the
antibacterial performance of ST could be further enhanced by incorporating antimicrobial
agents, such as silver or zinc nanoparticles.

In terms of limitations, it is commonly known that in vitro research may not accu-
rately capture the intricate dynamics of the oral environment, including pH variations and
dynamic loads. Future research should focus on long-term clinical trials to validate these
findings and explore the material’s performance in different restorative applications, in-
cluding its interaction with various adhesive systems and its durability under thermal and
mechanical cycling. The findings collectively highlight a link between the physicochemical
properties and the mechanical performance of the tested materials. The lower porosity
of ST, enhanced wettability, and bioactive mineral deposition contributed to its superior
compressive strength and fracture resistance. These properties likely work synergistically,
supporting ST as a robust alternative to conventional light-curing composites, particularly
in clinical scenarios requiring durability and bioactivity.

5. Conclusions
In conclusion, the results of this study emphasize the potential of ST Automix as a

robust restorative material alternative to amalgam, particularly in terms of compressive
strength, reduced porosity, enhanced wettability, and bioactive properties. ST demon-
strated higher compressive strength than TE and CM and was fractured in multiple smaller
fragments compared to the brittle fractures of TE and CM. ST revealed cubical-like crys-
talline formations indicating some level of bioactivity, whereas no changes were observed
for TE and CM. Future investigations should focus on long-term clinical evaluations and
optimizing antibacterial performance to further expand its applications. In addition, further
studies should be performed to evaluate the anti-biofilm properties of the tested polymers
in the present study.
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